The role of mitochondrial dysfunction in the pathogenesis of inflammatory diseases

Authors

  • T. V. Tolstik Petrovsky National Research Center of Surgery
  • T. V. Kirichenko Petrovsky National Research Center of Surgery
  • A. I. Bogatyreva Petrovsky National Research Center of Surgery
  • Yu. V. Markina ФГБНУ "РНЦХ им. академика Б.В. Петровского"
  • A. M. Markin Рeoples’ Friendship University of Russia
  • S. G. Kozlov Chazov National Medical Research Center of Cardiology

DOI:

https://doi.org/10.34687/2219-8202.JAD.2023.03.0002

Abstract

Currently, mitochondrial dysfunction is considered as one of the key factors in the occurrence and progression of metabolic and inflammatory diseases, and, in particular, in the pathogenesis of atherosclerosis. Mitochondria form a homogeneous network in the cell, in which the processes of fission, fusion and mitophagy normally occur continuously. The imbalance of these processes leads to mitochondrial dysfunction and the development of pathological conditions. Metabolic changes in mitochondria affect various biological processes in the organism, in particular, they control the formation and differentiation of monocytes, the key cells in the pathogenesis of inflammation. The molecular mechanisms underlying the regulation of mitochondrial dynamics in monocytes are not well understood. In this review, we tried to consider in detail the processes occurring in mitochondria in normal and pathological conditions, as well as to discuss the possibilities of developing new diagnostic and therapeutic strategies for diseases in which pathogenesis the mitochondrial dysfunction plays an important role.

Downloads

Download data is not yet available.

References

Barbu E, Popescu MR, Popescu AC, Balanescu SM. Inflammation as a precursor of atherothrombosis, diabetes and early vascular aging. Int J Mol Sci. 2022;23(2):963. doi:10.3390/ijms23020963.

Karpov A.M., Rvacheva A.V., Shogenova M.H., Zhetisheva R.A., Masenko V.P., Naumov V.G. Immunoinflammatory mechanisms of atherosclerosis: modern consepts. Journal of Atherosclerosis and Dyslipidemias. 2014;1(14):25-30. Russian. (Карпов А.М., Рвачева А.В., Шогенова М.Х., Жетишева Р.А., Масенко В.П., Наумов В.Г. Современные представления об иммуновоспалительных механизмах атеросклероза. Атеросклероз и Дислипидемии. 2014;1(14):25-30).

Amar J, Perez L, Burcelin R, Chamontin B. Arteries, inflammation and insulin resistance. J Hypertens Suppl. 2006;24(5):S18-S20. doi:10.1097/01.hjh.0000240042.50838.61.

Nozadze D.N., Rvacheva A.V., Kaznacheeva E.I., Sergienko I.V. Monocytes in the development and destabilization of atherosclerotic plaques. Journal of Atherosclerosis and Dyslipidemias. 2012;3(8):25–36. Russian. (Нозадзе Д. Н., Рвачёва А. В., Казначеева Е. И., Сергиенко И. В. Моноциты в развитии и дестабилизации атеросклеротической бляшки // Атеросклероз и Дислипидемии. 2012;3(8):25–36).

Breda CNS, Davanzo GG, Basso PJ, Saraiva Câmara, NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol. 2019;26:101255. doi:10.1016/j.redox.2019.101255.

Giacomello M, Pyakurel A, Glytsou C, Scorrano L. The cell biology of mitochondrial membrane dynamics. Nat Rev Mol Cell Biol. 2020;21(4):204–224. doi:10.1038/S41580-020-0210-7.

Prasun P. Mitochondrial dysfunction in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis. 2020;1866(10):165838. doi:10.1016/J.BBADIS.2020.165838.

Poznyak AV, Nikiforov NG, Wu WK, Kirichenko TV, Orekhov AN. Autophagy and mitophagy as essential components of atherosclerosis. Cells. 2021;10(2):443. doi:10.3390/CELLS10020443.

Amengual J, Barrett TJ. Monocytes and macrophages in atherogenesis. Curr Opin Lipidol. 2019;30(5):401-408. doi:10.1097/MOL.0000000000000634.

Groh LA, Riksen NP. Macrophage mitochondrial superoxides as a target for atherosclerotic disease treatment. Int J Biochem Cell Biol. 2020;129:105883. doi:10.1016/J.BIOCEL.2020.105883.

Ong SM, Hadadi E, Dang TM, Yeap WH, Tan CTY, Ng TP et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis. 2018;9(3):266. doi:10.1038/S41419-018-0327-1.

Zuo H, Wan Y. Metabolic reprogramming in mitochondria of myeloid cells. Cells. 2019;9(1):5. doi:10.3390/CELLS9010005.

Thorp EB. Mitochondrial indigestion after lipid scavenging. Circ Res. 2019;125(12):1103-1105. doi:10.1161/CIRCRESAHA.119.316200.

Stunault MI, Bories G, Guinamard RR, Ivanov S. Metabolism plays a key role during macrophage activation. Mediators Inflamm. 2018;2018:2426138. doi:10.1155/2018/2426138.

Vats D, Mukundan L, Odegaard JI, Zhang L, Smith KL, Morel CR et al. Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab. 2006;4(1):13-24. doi:10.1016/J.CMET.2006.05.011.

Quintana-Cabrera R, Scorrano L. Determinants and Outcomes of Mitochondrial Dynamics. Mol Cell. 2023;83(6):857-876. doi:10.1016/J.MOLCEL.2023.02.012.

Afroz SF, Raven KD, Lawrence GMEP, Kapetanovic R, Schroder K, Sweet, MJ. Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans. 2023;51(1):41-56. doi:10.1042/BST20220014.

Gao Z, Li Y, Wang F, Huang T, Fan K, Zhang Y et al. Mitochondrial dynamics controls anti-tumour innate immunity by regulating chip-irf1 axis stability. Nat Commun. 2017;8(1):1805. doi:10.1038/S41467-017-01919-0.

Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 2018;39(1):6-18. doi:10.1016/J.IT.2017.08.006.

Kimura M, Okano Y. Human Misato regulates mitochondrial distribution and morphology. Exp Cell Res. 2007;313(7):1393-1404. doi:10.1016/J.YEXCR.2007.02.004.

Galluzzi L, Vanpouille-Box C. BAX and BAK at the gates of innate immunity. Trends Cell Biol. 2018;28(5):343-345. doi:10.1016/J.TCB.2018.02.010.

Bulthuis EP, Adjobo-Hermans MJW, Willems PHGM, Koopman WJH. Mitochondrial morphofunction in mammalian cells. Antioxid Redox Signal. 2019;30(18):2066-2109. doi:10.1089/ARS.2018.7534.

Gal A, Balicza P, Weaver D, Naghdi S, Joseph SK, Várnai P et al. MSTO1 is a cytoplasmic pro-mitochondrial fusion protein, whose mutation induces myopathy and ataxia in humans. EMBO Mol Med. 2017;9(7):967-984. doi:10.15252/EMMM.201607058.

Böckler S, Chelius X, Hock N, Klecker T, Wolter M, Weiss M et al. Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J Cell Biol. 2017;216(8):2481-2498. doi:10.1083/JCB.201611197.

Xia Y, Zhang X, An P, Luo J, Luo Y. Mitochondrial homeostasis in VSMCs as a central hub in vascular remodeling. Int J Mol Sci. 2023;24(4):3483. doi:10.3390/IJMS24043483.

Zerihun M, Sukumaran S, Qvit N. The Drp1-mediated mitochondrial fission protein interactome as an emerging core player in mitochondrial dynamics and cardiovascular disease therapy. International Journal of Molecular Sciences. 2023;24(6):5785. doi:10.3390/IJMS24065785.

Qin L, Xi S. The role of mitochondrial fission proteins in mitochondrial dynamics in kidney disease. Int J Mol Sci. 2022;23(23):14725. doi:10.3390/IJMS232314725.

Wu NN, Zhang Y, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxid Med Cell Longev. 2019;2019:9825061. doi:10.1155/2019/9825061.

Shah M, Chacko LA, Joseph JP, Ananthanarayanan V. Mitochondrial dynamics, positioning and function mediated by cytoskeletal interactions. Cell Mol Life Sci. 2021;78(8):3969–3986. doi:10.1007/S00018-021-03762-5.

Kruppa AJ, Buss F. Motor proteins at the mitochondria-cytoskeleton interface. J Cell Sci. 2021;134(7):jcs226084. doi:10.1242/JCS.226084.

Saxton WM, Hollenbeck PJ. The axonal transport of mitochondria. J Cell Sci. 2012;125(Pt 9):2095-2104. doi:10.1242/JCS.053850.

Lin J, Duan J, Wang Q, Xu S, Zhou S, Yao K. Mitochondrial dynamics and mitophagy in cardiometabolic disease. Front Cardiovasc Med. 2022;9:917135. doi:10.3389/FCVM.2022.917135.

Skuratovskaia D, Komar A, Vulf M, Litvinova L. Mitochondrial destiny in type 2 diabetes: the effects of oxidative stress on the dynamics and biogenesis of mitochondria. PeerJ. 2020;8:e9741. doi:10.7717/PEERJ.9741.

Jackisch L, Murphy AM, Kumar S, Randeva H, Tripathi G, McTernan PG. Tunicamycin-induced endoplasmic reticulum stress mediates mitochondrial dysfunction in human adipocytes. J Clin Endocrinol Metab. 2020;105(9):dgaa258. doi:10.1210/CLINEM/DGAA258.

Lefranc C, Friederich-Persson M, Palacios-Ramirez R, Cat AND. Mitochondrial oxidative stress in obesity: role of the mineralocorticoid receptor. J Endocrinol. 2018;238(3):R143-R159. doi:10.1530/JOE-18-0163.

Morales PE, Arias-Durán C, Ávalos-Guajardo Y, Aedo G, Verdejo HE, Parra V et al. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med. 2020;71:100822. doi:10.1016/J.MAM.2019.09.006.

Bach D, Naon D, Pich S, Soriano FX, Vega N, Rieusset J et al. Expression of Mfn2, the charcot-marie-tooth neuropathy type 2A gene, in human skeletal muscle effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor α and interleukin-6. Diabetes. 2005;54(9):2685-2693. doi:10.2337/DIABETES.54.9.2685.

Mahdaviani K, Benador IY, Su S, Gharakhanian RA, Stiles L, Trudeau KM et al. Mfn2 deletion in brown adipose tissue protects from insulin resistance and impairs thermogenesis. EMBO Rep. 2017;18(7):1123-1138. doi:10.15252/EMBR.201643827.

Sorianello E, Soriano FX, Fernández-Pascual S, Sancho A, Naon D, Vila-Caballer M et al. The promoter activity of human Mfn2 depends on Sp1 in vascular smooth muscle cells. Cardiovasc Res. 2012;94(1):38-47. doi:10.1093/CVR/CVS006.

Chehaitly A, Guihot AL, Proux C, Grimaud L, Aurrière J, Legouriellec B et al. Altered mitochondrial Opa1-related fusion in mouse promotes endothelial cell dysfunction and atherosclerosis. Antioxidants (Basel). 2022;11(6):1078. doi:10.3390/ANTIOX11061078.

Liu R, Jin P, Yu L, Wang Y, Han L, Shi T, Li X. Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS One. 2014;9(3):e92810. doi:10.1371/JOURNAL.PONE.0092810.

Shen Y, Liu WW, Zhang X, Shi JG, Jiang S, Zheng L et al. TRAF3 promotes ROS production and pyroptosis by targeting ULK1 ubiquitination in macrophages. FASEB J. 2020;34(5):7144-7159. doi:10.1096/FJ.201903073R.

Mahadev Bhat S, Shrestha D, Massey N, Karriker LA, Kanthasamy AG, Charavaryamath C. Organic Dust Exposure Induces Stress Response and Mitochondrial Dysfunction in Monocytic Cells. Histochem Cell Biol. 2021;155(6):699–718. doi:10.1007/S00418-021-01978-X.

Li Y, He M, Liu Z, Chuah C, Tang Y, Duo Y et al. A simple strategy for the efficient design of mitochondria-targeting NIR-II phototheranostics. J Mater Chem B. 2023;11(12):2700-2705. doi:10.1039/D2TB02295H.

Ciccarelli G, Conte S, Cimmino G, Maiorano P, Morrione A, Giordano A. Mitochondrial dysfunction: the hidden player in the pathogenesis of atherosclerosis? International Journal of Molecular Sciences. 2023;24(2):1086. doi:10.3390/IJMS24021086.

Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J et al. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev. 2017;117(15):10043-10120. doi:10.1021/ACS.CHEMREV.7B00042.

Markin A.M., Markina Yu.V., Sukhorukov V.N., Khaylov A.M., Orekhov A.N. The role of physical activity in the development of atherosclerotic lesions of the vascular wall. Clin. exp. morphology. 2019;8(4):25–31. doi:10.31088/CEM2019.8.4.25-31. Russian. (Маркин А.М., Маркина Ю.В., Сухоруков В.Н., Хайлов А.М., Орехов А.Н. Роль физических нагрузок в развитии атеросклеротических поражений сосудистой стенки. Клин. эксп. морфология. 2019;8(4):25–31. DOI:10.31088/CEM2019.8.4.25-31).

Kiyuna LA, Albuquerque RPE, Chen CH, Mochly-Rosen D, Ferreira JCB. Targeting mitochondrial dysfunction and oxidative stress in heart failure: challenges and opportunities. Free Radic Biol Med. 2018;129:155-168. doi:10.1016/J.FREERADBIOMED.2018.09.019.

Zhu Y, Li M, Lu Y, Li J, Ke Y, Yang J. Ilexgenin A inhibits mitochondrial fission and promote Drp1 degradation by Nrf2-induced PSMB5 in endothelial cells. Drug Dev Res. 2019;80(4):481–489. doi:10.1002/DDR.21521.

Published

2023-08-22

How to Cite

Tolstik T. V., Kirichenko T. V., Bogatyreva A. I., Markina Y. V., Markin A. M., Kozlov S. G. The role of mitochondrial dysfunction in the pathogenesis of inflammatory diseases // The Journal of Atherosclerosis and Dyslipidemias. 2023. VOL. № 3 (52). PP. 10–17.

Issue

Section

Review

Most read articles by the same author(s)