The significance of dyslipidemia before and during the COVID-19 pandemic. Analysis of a big laboratory dataset

Authors

  • M. V. Ezhov ФГБУ «Национальный медицинский исследовательский центр кардиологии им. академика Е.И. Чазова» Минздрава России, г. Москва
  • T. I. Batluk Ассоциация "Евразийская Ассоциация Терапевтов", г. Москва
  • D. S. Tokmin AlphaStat Statistical Agency, Moscow, Russia
  • E. F. Tsyplukhina Novascreen Medical Labs, Moscow, Russia
  • A. G. Arutyunov Association " Eurasian Association of Internal Medicine", Moscow, Russia, National Institute of Health named after S. Avdalbekyan, Yerevan, Armenia

DOI:

https://doi.org/10.34687/2219-8202.JAD.2023.02.0004

Keywords:

dyslipidemia, COVID-19, low-density lipoprotein cholesterol, triglycerides

Abstract

The aim of this study was to investigate the changes of lipid profile in different age groups based on the analysis of large data series. The data were collected by private laboratories in the Russian Federation before and during the COVID-19 pandemic.

Materials and methods. The cross-sectional analysis of a database from large private Russian laboratories included 31,519 patients over 18 years of age in two sections - for 2019 and 2021. The patients’ lipid profile was monitored by levels of triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and non-HDL. Other biochemical parameters were also considered: Uric acid, creatinine, glycated hemoglobin, serum glucose, etc. All patients were divided into 5 groups according to the level of TG as a marker of residual risk (<1.7 mmol/l, 1, 7-2.3 mmol/l, 2.3-5.6 mmol/l, 5.6-10 mmol/l, >10 mmol/l).

Results. In 2021, the cohort became younger, and the proportion of women increased. The total prevalence of hypertriglyceridemia decreased from 26.2% in 2019 to 21.5% in 2021 (p<0.01). Analysis of the changes from 2019 to 2021 in individual age groups with a step of 10 years (18-29, 30-39, 40-49, 50-59, 60-69, 70+ years) showed that the number of patients with higher TG levels decreased, except for the groups of 18-29, 60-69 and 70+ years. The triglyceride-glucose index lowered by 2021, and the difference remained significant after adjustment for sex and age (p<0.01). Similarly, the average TG to HDL-C ratio decreased by 2021, and the difference remained significant after adjustment for patient sex and age (p<0.001). The average HDL-C level increased through 2021, and the difference remained significant after the adjustment. LDL-C levels also increased significantly (p<0.01). The number of patients with LDL-C cholesterol levels above 3 mmol/l increased.

Conclusion. This study shows quite interesting and yet difficult to explain trends in the lipid profile of patients who use private medical laboratories. LDL-C levels have increased, however, despite the improvement in HDL-C and TG levels, and the number of individuals with hypertriglyceridemia exceeds 20%, which requires further monitoring.

Downloads

Download data is not yet available.

References

Boytsov S.A., Demkina A.E., Oshchepkova E.V., Dolgusheva Yu.A. Progress and Problems of Practical Cardiology in Russia at the Present Stage. Kardiologiia. 2019;59(3):53-59. Russian. (Бойцов С.А., Демкина А.Е., Ощепкова Е.В., Долгушева Ю.А. Достижения и проблемы практической кардиологии в России на современном этапе. Кардиология. 2019;59(3):53-59). doi: 10.18087/cardio.2019.3.10242.

Mach F., Baigent C., Catapano A.L., Koskinas K.C., Casula M., Badimon L., et al.; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111-188. doi: 10.1093/eurheartj/ehz455.

Metelskaya V.A., Shalnova S.A., Deev A.D. , Perova N.V. ,Gomyranova N.V. ,Litinskaya O.A., et al. An analysis of the prevalence of indicators characterizing the atherogenicity of the lipoprotein spectrum in residents of the Russian Federation (according to the ESSE-RF study). Prophylactic medicine. 2016;19(1):15–23. Russian. (Метельская В.А., Шальнова С.А., Деев А.Д., Перова Н.В., Гомыранова Н.В., Литинская О.А. и др. Анализ распространенности показателей, характеризующих атерогенность спектра липопротеинов, у жителей Российской Федерации (по данным исследования ЭССЕ-РФ). Профилактическая медицина. 2016;19(1):15–23). doi: 10.17116/profmed201619115-23.

Parhofer K.G., Laufs U. The Diagnosis and Treatment of Hypertriglyceridemia. Dtsch Arztebl Int. 2019;116(49):825-832. doi: 10.3238/arztebl.2019.0825.

Liu J., Zeng F.F., Liu Z.M., Zhang C.X., Ling W.H., Chen Y.M. Effects of blood triglycerides on cardiovascular and all-cause mortality: a systematic review and meta-analysis of 61 prospective studies. Lipids Health Dis. 2013;12:159. doi: 10.1186/1476-511X-12-159.

Arutyunov G.P., Tarlovskaya E.I., Arutyunov A.G., Belenkov Yu.N., Konradi A.O., Lopatin Yu.M., et al. Lipid profile in hospitalized patients with COVID-19 depending on the outcome of its acute phase: data from the international registry "Dynamics analysis of comorbidities in SARS-CoV-2 infection survivors". Russian Journal of Cardiology. 2022;27(9):5042. Russian. (Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., Беленков Ю.Н., Конради А.О., Лопатин Ю.М. и др. Анализ показателей липидного спектра у госпитализированных пациентов с COVID-19 в зависимости от исхода острого периода инфекции по данным международного регистра «Анализ динамики Коморбидных заболеваний у пациентов, перенесших инфицирование SARS-CoV-2». Российский кардиологический журнал. 2022;27(9):5042). doi: 10.15829/1560-4071-2022-5042.

Kukharchuk V.V., Ezhov M.V., Sergienko I.V., Arabidze G.G., Bubnova M.G., Balakhonova T.V., et al. Diagnosis and correction of lipid metabolism disorders in order to prevent and treat atherosclerosis. Russian recommendations, VII revision. Journal of Atherosclerosis and Dyslipidemias. 2020;1(38):7-42. Russian. (Кухарчук В.В., Ежов М.В., Сергиенко И.В., Арабидзе Г.Г., Бубнова М.Г., Балахонова Т.В. и др. Атеросклероз и дислипидемии. Диагностика и коррекция нарушений липидного обмена с целью профилактики и лечения атеросклероза. Российские рекомендации,VII пересмотр. 2020;1(38):7-42). doi: 10.34687/2219-8202.JAD.2020.01.0002.

Arutyunov G.P., Tarlovskaya E.I., Arutyunov A.G., Belenkov Yu.N., Konradi A.O., Lopatin Yu.M., et al. Clinical features of post-COVID-19 period. Results of the international register “Dynamic analysis of comorbidities in SARS-CoV-2 survivors (AKTIV SARS-CoV-2)”. Data from 6-month follow-up. Russian Journal of Cardiology. 2021;26(10):4708. Russian. (Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., Беленков Ю.Н., Конради А.О., Лопатин Ю.М., Ребров А.П., Терещенко С.Н., Чесникова А.И. и др. Клинические особенности постковидного периода. Результаты международного регистра “Анализ динамики коморбидных заболеваний у пациентов, перенесших инфицирование SARS-CoV-2 (АКТИВ SARSCoV-2)”. Предварительные данные (6 месяцев наблюдения). Российский кардиологический журнал. 2021;26(10):4708). doi: 10.15829/1560-4071-2021-4708.

Hessami A, Shamshirian A, Heydari K, Pourali F, Alizadeh-Navaei R, Moosazadeh M, Abrotan S, Shojaie L, Sedighi S, Shamshirian D, Rezaei N. Cardiovascular diseases burden in COVID-19: Systematic review and meta-analysis. Am J Emerg Med. 2021;46:382-391. doi: 10.1016/j.ajem.2020.10.022.

Arutyunov G.P., Tarlovskaya E.I., Arutyunov A.G., Belenkov Yu.N., Konradi A.O., Lopatin Yu.M., et al. Analiz vliyaniya komorbidnoj serdechno-sosudistoj patologii na techenie i iskhody COVID-19 u gospitalizirovannyh pacientov v pervuyu i vtoruyu volny pandemii v Evrazijskom regione. Kardiologiia. 2022 Dec 31;62(12):38-49. Russian. (Арутюнов Г.П., Тарловская Е.И., Арутюнов А.Г., Беленков Ю.Н., Конради А.О., Лопатин Ю.М. и др. Анализ влияния коморбидной сердечно-сосудистой патологии на течение и исходы COVID-19 у госпитализированных пациентов в первую и вторую волну пандемии в Евразийском регионе. Кардиология. 2022;62(12):38-49.) doi: 10.18087/cardio.2022.12.n2125.

Zinellu A., Paliogiannis P., Fois A.G., Solidoro P., Carru C., Mangoni A.A. Cholesterol and Triglyceride Concentrations, COVID-19 Severity, and Mortality: A Systematic Review and Meta-Analysis With Meta-Regression. Front Public Health. 2021;9:705916. doi: 10.3389/fpubh.2021.705916.

Wu B., Zhou J.H., Wang W.X., Yang H.L., Xia M., Zhang B.H., et al. Association Analysis of Hyperlipidemia with the 28-Day All-Cause Mortality of COVID-19 in Hospitalized Patients. Chin Med Sci J. 2021;36(1):17-26. doi: 10.24920/003866.

Kowalska K., Sabatowska Z., Forycka J., Młynarska E., Franczyk B., Rysz J. The Influence of SARS-CoV-2 Infection on Lipid Metabolism-The Potential Use of Lipid-Lowering Agents in COVID-19 Management. Biomedicines. 2022;10(9):2320. doi: 10.3390/biomedicines10092320.

Freiberg A., Schubert M., Romero Starke K., Hegewald J., Seidler A. A Rapid Review on the Influence of COVID-19 Lockdown and Quarantine Measures on Modifiable Cardiovascular Risk Factors in the General Population. Int J Environ Res Public Health. 2021;18(16):8567. doi: 10.3390/ijerph18168567.

Lippi G., Henry B.M., Bovo C., Sanchis-Gomar F. Health risks and potential remedies during prolonged lockdowns for coronavirus disease 2019 (COVID-19). Diagnosis (Berl). 2020;7(2):85-90. doi: 10.1515/dx-2020-0041.

Spitler K.M., Davies B.S.J. Aging and plasma triglyceride metabolism. J Lipid Res. 2020;61(8):1161-1167. doi: 10.1194/jlr.R120000922.

Carroll M.D., Lacher D.A., Sorlie P.D., Cleeman J.I., Gordon D.J., Wolz M., et al. Trends in serum lipids and lipoproteins of adults, 1960-2002. JAMA. 2005;294(14):1773-81. doi: 10.1001/jama.294.14.1773.

Chidambaram V., Kumar A., Majella M.G., Seth B., Sivakumar R.K., Voruganti D., et al. HDL cholesterol levels and susceptibility to COVID-19. EBioMedicine. 2022;82:104166. doi: 10.1016/j.ebiom.2022.104166.

Xu E, Xie Y, Al-Aly Z. Risks and burdens of incident dyslipidaemia in long COVID: a cohort study. Lancet Diabetes Endocrinol. 2023;11(2):120-128. doi: 10.1016/S2213-8587(22)00355-2.

Marston N.A., Giugliano R.P., Im K., Silverman M.G., O'Donoghue M.L., Wiviott S.D., et al. Association Between Triglyceride Lowering and Reduction of Cardiovascular Risk Across Multiple Lipid-Lowering Therapeutic Classes: A Systematic Review and Meta-Regression Analysis of Randomized Controlled Trials. Circulation. 2019;140(16):1308-1317. doi: 10.1161/CIRCULATIONAHA.119.041998.

Tang Y., Hu L., Liu Y., Zhou B., Qin X., Ye J., et al. Possible mechanisms of cholesterol elevation aggravating COVID-19. Int J Med Sci. 2021;18(15):3533-3543. doi: 10.7150/ijms.62021.

Freeman T.L., Swartz T.H. Targeting the NLRP3 Inflammasome in Severe COVID-19. Front Immunol. 2020;11:1518. doi: 10.3389/fimmu.2020.01518.

Zhao N., Di B., Xu L.L. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev. 2021;61:2-15. doi: 10.1016/j.cytogfr.2021.06.002.

López-Reyes A., Martinez-Armenta C., Espinosa-Velázquez R., Vázquez-Cárdenas P., Cruz-Ramos M., Palacios-Gonzalez B., et al. NLRP3 Inflammasome: The Stormy Link Between Obesity and COVID-19. Front Immunol. 2020;11:570251. doi: 10.3389/fimmu.2020.570251.

Grebe A., Hoss F., Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018;122(12):1722-1740. doi: 10.1161/CIRCRESAHA.118.311362.

Hoseini Z., Sepahvand F., Rashidi B., Sahebkar A., Masoudifar A., Mirzaei H. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol. 2018;233(3):2116-2132. doi: 10.1002/jcp.25930.

Chen Y., Chang Z., Liu Y., Zhao Y., Fu J., Zhang Y., et al. Triglyceride to high-density lipoprotein cholesterol ratio and cardiovascular events in the general population: A systematic review and meta-analysis of cohort studies. Nutr Metab Cardiovasc Dis. 2022;32(2):318-329. doi: 10.1016/j.numecd.2021.11.005.

Azarpazhooh M.R., Najafi F., Darbandi M., Kiarasi S., Oduyemi T., Spence J.D. Triglyceride/High-Density Lipoprotein Cholesterol Ratio: A Clue to Metabolic Syndrome, Insulin Resistance, and Severe Atherosclerosis. Lipids. 2021;56(4):405-412. doi: 10.1002/lipd.12302.

Yang K., Liu W. Triglyceride and Glucose Index and Sex Differences in Relation to Major Adverse Cardiovascular Events in Hypertensive Patients Without Diabetes. Front Endocrinol (Lausanne). 2021;12:761397. doi: 10.3389/fendo.2021.761397.

Sajdeya O., Beran A., Mhanna M., Alharbi A., Burmeister C., Abuhelwa Z., et al. Triglyceride Glucose Index for the Prediction of Subclinical Atherosclerosis and Arterial Stiffness: A Meta-analysis of 37,780 Individuals. Curr Probl Cardiol. 2022;47(12):101390. doi: 10.1016/j.cpcardiol.2022.101390.

Published

2023-06-04

How to Cite

Ezhov M. V. ., Batluk T. I., Tokmin D. S. ., Tsyplukhina E. F., Arutyunov A. G. The significance of dyslipidemia before and during the COVID-19 pandemic. Analysis of a big laboratory dataset // The Journal of Atherosclerosis and Dyslipidemias. 2023. VOL. № 2 (51). PP. 31–42.

Issue

Section

Original research paper

Most read articles by the same author(s)

<< < 1 2 3 4