Prospects for the possibilities of visualization of atherosclerosis by positron emission tomography in the Russian Federation

Authors

  • A. A. Ansheles National Medical Research Center of Cardiology named after akad. E.I. Chazov" Ministry of Health of Russia, Moscow, Russia https://orcid.org/0000-0002-2675-3276
  • G. G. Shimchuk National Research Center "Kurchatov Institute"
  • A. B. Bruskin Burnasyan SRC-FMBC FMBA
  • Gr. G. Shimchuk National Research Center "Kurchatov Institute"
  • V. B. Sergienko National Medical Research Center of Cardiology named after akad. E.I. Chazov" Ministry of Health of Russia, Moscow, Russia

DOI:

https://doi.org/10.34687/2219-8202.JAD.2022.04.0001

Keywords:

atherosclerosis, positron emission tomography, radiopharmaceuticals, gallium-68

Abstract

Atherosclerosis and the concomitant inflammation of the artery wall is the process that precedes myocardial ischemia and infarction and it deteriorates the prognosis of patients with cardiovascular diseases. Early visualization of atherosclerosis is an important task of clinical cardiology. Currently, modern radionuclide methods are developing to evaluate various components of atherogenesis. The review presents the actual possibilities of molecular visualization of atherosclerosis using positron emission tomography, emphasizing on the most promising radiopharmaceuticals based on generator-produced gallium-68, used in this regard, in the context of assessing the existing situation with a cardiology PET diagnostics in the Russian Federation.

Downloads

Download data is not yet available.

References

Cardiovascular diseases (CVDs). WHO fact sheet.; [cited]; Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

Soehnlein O., Libby P. Targeting inflammation in atherosclerosis - from experimental insights to the clinic. Nat Rev Drug Discov. 2021;20(8):589-610.

Dorbala S., Ananthasubramaniam K., Armstrong I.S., Chareonthaitawee P., DePuey E.G., Einstein A.J., Gropler R.J., Holly T.A., Mahmarian J.J., Park M.A., Polk D.M., Russell R., 3rd, Slomka P.J., Thompson R.C., Wells R.G. Single Photon Emission Computed Tomography (SPECT) Myocardial Perfusion Imaging Guidelines: Instrumentation, Acquisition, Processing, and Interpretation. J Nucl Cardiol. 2018;25(5):1784-846.

Nuclear. Cardiology. Guidance on the Implementation of SPECT Myocardial Perfusion Imaging. IAEA Human Health Series No 23 (Rev 1). 2016.

Beller G.A. Future growth and success of nuclear cardiology. J Nucl Cardiol. 2018;25(2):375-78.

Sammartano A., Migliari S., Scarlattei M., Baldari G., Serreli G., Lazzara C., Garau L., Ghetti C., Ruffini L. Performance and long-term consistency of five Galliform 68Ge/68Ga generators used for clinical Ga-68 preparations over a 4 year period. Nucl Med Commun. 2022;43(5):568-76.

Peer-Firozjaei M., Tajik-Mansoury M.A., Geramifar P., Ghorbani R., Zarifi S., Miller C., Rahmim A. Optimized cocktail of 90Y/177Lu for radionuclide therapy of neuroendocrine tumors of various sizes: a simulation study. Nucl Med Commun. 2022;43(6):646-55.

Fani M., Maecke H.R., Okarvi S.M. Radiolabeled peptides: valuable tools for the detection and treatment of cancer. Theranostics. 2012;2(5):481-501.

Sager S., Kabasakal L., Halac M., Maecke H., Uslu L., Onsel C., Kanmaz B. Comparison of 99mTc-HYNIC-TOC and HYNIC-TATE octreotide scintigraphy with FDG PET and 99mTc-MIBI in local recurrent or distant metastatic thyroid cancers. Clin Nucl Med. 2013;38(5):321-5.

Li L., Chen X., Yu J., Yuan S. Preliminary Clinical Application of RGD-Containing Peptides as PET Radiotracers for Imaging Tumors. Front Oncol. 2022;12:837952.

Gronman M., Tarkia M., Kiviniemi T., Halonen P., Kuivanen A., Savunen T., Tolvanen T., Teuho J., Kakela M., Metsala O., Pietila M., Saukko P., Yla-Herttuala S., Knuuti J., Roivainen A., Saraste A. Imaging of alphavbeta3 integrin expression in experimental myocardial ischemia with [(68)Ga]NODAGA-RGD positron emission tomography. J Transl Med. 2017;15(1):144.

Zhao L., Chen J., Pang Y., Fu K., Shang Q., Wu H., Sun L., Lin Q., Chen H. Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics. 2022;12(4):1557-69.

Lindner T., Loktev A., Altmann A., Giesel F., Kratochwil C., Debus J., Jager D., Mier W., Haberkorn U. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J Nucl Med. 2018;59(9):1415-22.

Zheng S., Lin R., Chen S., Zheng J., Lin Z., Zhang Y., Xue Q., Chen Y., Zhang J., Lin K., You X., Yao S., Miao W. Characterization of the benign lesions with increased (68)Ga-FAPI-04 uptake in PET/CT. Ann Nucl Med. 2021;35(12):1312-20.

Wu M., Ning J., Li J., Lai Z., Shi X., Xing H., Hacker M., Liu B., Huo L., Li X. Feasibility of In Vivo Imaging of Fibroblast Activation Protein in Human Arterial Walls. J Nucl Med. 2022;63(6):948-51.

de Galiza Barbosa F., Queiroz M.A., Nunes R.F., Costa L.B., Zaniboni E.C., Marin J.F.G., Cerri G.G., Buchpiguel C.A. Nonprostatic diseases on PSMA PET imaging: a spectrum of benign and malignant findings. Cancer Imaging. 2020;20(1):23.

Will L., Sonni I., Kopka K., Kratochwil C., Giesel F.L., Haberkorn U. Radiolabeled prostate-specific membrane antigen small-molecule inhibitors. Q J Nucl Med Mol Imaging. 2017;61(2):168-80.

O'Keefe D.S., Bacich D.J., Huang S.S., Heston W.D.W. A Perspective on the Evolving Story of PSMA Biology, PSMA-Based Imaging, and Endoradiotherapeutic Strategies. J Nucl Med. 2018;59(7):1007-13.

Derlin T., Thiele J., Weiberg D., Thackeray J.T., Puschel K., Wester H.J., Aguirre Davila L., Larena-Avellaneda A., Daum G., Bengel F.M., Schumacher U. Evaluation of 68Ga-Glutamate Carboxypeptidase II Ligand Positron Emission Tomography for Clinical Molecular Imaging of Atherosclerotic Plaque Neovascularization. Arterioscler Thromb Vasc Biol. 2016;36(11):2213-19.

Wong V.C.K., Yip J.W.L., Stevanovic A., Le K., Mansberg R. 68Ga-Prostate-Specific Membrane Antigen Uptake in Dissecting Abdominal Aortic Aneurysm. Clin Nucl Med. 2020;45(6):455-58.

Dalm V.A., van Hagen P.M., van Koetsveld P.M., Achilefu S., Houtsmuller A.B., Pols D.H., van der Lely A.J., Lamberts S.W., Hofland L.J. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells. Am J Physiol Endocrinol Metab. 2003;285(2):E344-53.

Yan S., Li M., Chai H., Yang H., Lin P.H., Yao Q., Chen C. TNF-alpha decreases expression of somatostatin, somatostatin receptors, and cortistatin in human coronary endothelial cells. J Surg Res. 2005;123(2):294-301.

Tarkin J.M., Joshi F.R., Evans N.R., Chowdhury M.M., Figg N.L., Shah A.V., Starks L.T., Martin-Garrido A., Manavaki R., Yu E., Kuc R.E., Grassi L., Kreuzhuber R., Kostadima M.A., Frontini M., Kirkpatrick P.J., Coughlin P.A., Gopalan D., Fryer T.D., Buscombe J.R., Groves A.M., Ouwehand W.H., Bennett M.R., Warburton E.A., Davenport A.P., Rudd J.H. Detection of Atherosclerotic Inflammation by (68)Ga-DOTATATE PET Compared to [(18)F]FDG PET Imaging. J Am Coll Cardiol. 2017;69(14):1774-91.

Adams R.L., Adams I.P., Lindow S.W., Zhong W., Atkin S.L. Somatostatin receptors 2 and 5 are preferentially expressed in proliferating endothelium. Br J Cancer. 2005;92(8):1493-8.

Jain A., Mathur A., Pandey U., Sarma H.D., Dash A. (68)Ga labeled fatty acids for cardiac metabolic imaging: Influence of different bifunctional chelators. Bioorg Med Chem Lett. 2016;26(23):5785-91.

Published

2022-11-28

How to Cite

Ansheles A. A., Shimchuk G. G., Bruskin A. B., Shimchuk G. G., Sergienko V. B. Prospects for the possibilities of visualization of atherosclerosis by positron emission tomography in the Russian Federation // The Journal of Atherosclerosis and Dyslipidemias. 2022. VOL. № 4 (49). PP. 5–9.

Issue

Section

Review

Most read articles by the same author(s)

1 2 > >>