The role of sortilin in atherosclerosis and carbohydrate metabolism disorders (literature review)

Authors

  • A. M. Alieva N.I. Pirogov Russian National Research Medical University
  • N. V. Teplova N.I. Pirogov Russian National Research Medical University
  • I. E. Baykova N.I. Pirogov Russian National Research Medical University
  • A. M. Rakhaev Kabardino-Balkarian State University named after Kh.M. Berbekov
  • I. А. Kovtyukh N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
  • I. V. Kotikova N.I. Pirogov Russian National Research Medical University https://orcid.org/0000-0001-5352-8499
  • I. G. Nikitin N.I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation

DOI:

https://doi.org/10.34687/2219-8202.JAD.2024.02.0003

Abstract

Cardiovascular disease is a global health, social and economic problem. Currently, there is an active search for new biological markers and therapeutic targets in order to develop effective approaches to risk stratification and secondary prevention of cardiovascular pathology. Researchers are interested in sortilin, which belongs to the family of vacuolar sorting receptors type I. Sortilin takes part in intracellular transport between the endoplasmic reticulum, Golgi apparatus, lysosomes and the plasma membrane, thereby regulating many biological processes. The purpose of the presented article was to analyze studies devoted to the study of sortilin as a biomarker in atherosclerosis and carbohydrate metabolism disorders. According to the data obtained to date, sortilin is a promising molecule with diagnostic and prognostic potential for atherosclerosis and carbohydrate metabolism disorders. Further studies examining sortilin as an additional laboratory tool are needed. Regulating the concentration and expression of sortilin may be a promising strategy for treating people with lipid and carbohydrate metabolism disorders.

Downloads

Download data is not yet available.

References

Deng P, Fu Y, Chen M, Wang D, Si L. Temporal trends in inequalities of the burden of cardiovascular disease across

countries and territories. Int J Equity Health. 2023;22(1):164. doi: 10.1186/s12939-023-01988-2.

Silva S, Fatumo S, Nitsch D. Mendelian randomization studies on coronary artery disease: a systematic review and

meta-analysis. Syst Rev. 2024;13(1):29. doi: 10.1186/s13643-023-02442-8.

Wong ND, Sattar N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat Rev Cardiol.

;20(10):685-695. doi: 10.1038/s41569-023-00877-z.

Goluhova EZ, Teryaeva NB, Alieva AM. Natrijureticheskie peptidy – markery i faktory prognoza pri hronicheskoj

serdechnoj nedostatochnosti. Kreativnaya kardiologiya. 2007;1-2:126-136. In Russian. (Голухова Е.З., Теряева Н.Б., Али-

ева А.М. Натрийуретические пептиды – маркеры и факторы прогноза при хронической сердечной недостаточ-

ности. Креативная кардиология. 2007;1-2:126-136).

Alieva AM, Chirkova NN, Pinchuk TV, Andreeva ON, Pivovarov VYu. Endothelines and cardiovascular pathology. Russian

Journal of Cardiology. 2014;(11):83-87. In Russian. (Алиева А.М., Чиркова Н.Н., Пинчук Т.В., Андреева О.Н., Пивова-

ров В.Ю. Эндотелины и сердечно-сосудистая патология. Российский кардиологический журнал. 2014;(11):83-87). doi:

15829/1560-4071-2014-11-83-87.

Alieva AM, Reznik EV, Pinchuk TV, Arakelyan RA, Valiev RK, Rakhaev AM, et al. Growth Differentiation Factor-15

(GDF-15) is a Biological Marker in Heart Failure. The Russian Archives of Internal Medicine. 2023;13(1):14-23. In

Russian. (Алиева А.М., Резник Е.В., Пинчук Т.В., Аракелян Р.А., Валиев Р.К., Рахаев А.М., Тихомирова А.С., Ники-

тин И.Г. Фактор дифференцировки роста-15 (GDF-15) как биологический маркер при сердечной недостаточности.

Архивъ внутренней медицины. 2023;13(1):14-23). doi: 10.20514/2226-6704-2023-13-1-14-23.

Mitok KA, Keller MP, Attie AD. Sorting through the extensive and confusing roles of sortilin in metabolic disease. J

Lipid Res. 2022;63(8):100243. doi: 10.1016/j.jlr.2022.100243.

Su X, Chen L, Chen X, Dai C, Wang B. Emerging roles of sortilin in affecting the metabolism of glucose and lipid

profiles. Bosn J Basic Med Sci. 2022;22(3):340-352. doi: 10.17305/bjbms.2021.6601.

Goettsch C, Kjolby M, Aikawa E. Sortilin and Its Multiple Roles in Cardiovascular and Metabolic Diseases. Arterioscler

Thromb Vasc Biol. 2018;38(1):19-25. doi: 10.1161/ATVBAHA.117.310292.

Georgoula M, Ntavaroukas P, Androutsopoulou A, Xiromerisiou G, Kalala F, Speletas M, et al. Sortilin Expression Levels

and Peripheral Immunity: A Potential Biomarker for Segregation between Parkinson's Disease Patients and Healthy

Controls. Int J Mol Sci. 2024;25(3):1791. doi: 10.3390/ijms25031791.

Avvisato R, Jankauskas SS, Varzideh F, Kansakar U, Mone P, Santulli G. Sortilin and hypertension. Curr Opin Nephrol

Hypertens. 2023;32(2):134-140. doi: 10.1097/MNH.0000000000000866.

Gubareva IV, Vukolova YY. Sortilin as a marker of atherosclerosis: biological and pathophysiological aspects.

Arterial’naya Gipertenziya. 2021;27(4):402-408. In Russian. (Губарева И.В., Вуколова Ю.Ю. Биологические и пато-

физиологические аспекты использования сортилина в диагностике атеросклероза. Артериальная гипертензия.

;27(4):402-408). doi:10.18705/1607-419X-2021-27-4-4.

Su X, Chen L, Chen X, Dai C, Wang B. Emerging roles of sortilin in affecting the metabolism of glucose and lipid

profiles. Bosn J Basic Med Sci. 2022;22(3):340-352. doi: 10.17305/bjbms.2021.6601.

Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM, Madsen P, et al. Sort1, encoded by the

cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 2010;12(3):213-223. doi:

1016/j.cmet.2010.08.006.

Patel KM, Strong A, Tohyama J, Jin X, Morales CR, Billheimer J, et al. Macrophage sortilin promotes LDL uptake,

foam cell formation, and atherosclerosis. Circ Res. 2015;116(5):789-796. doi: 10.1161/CIRCRESAHA.116.305811.

Mortensen MB, Kjolby M, Gunnersen S, Larsen JV, Palmfeldt J, Falk E, et al. Targeting sortilin in immune cells

reduces proinflammatory cytokines and atherosclerosis. J Clin Invest. 2014;124(12):5317-22. doi: 10.1172/JCI76002.

Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J, Buttenschøn H, et al. The hypercholesterolemia-risk

gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014;19(2):310-318. doi: 10.1016/j.cmet.2013.12.006.

Lv Y, Yang J, Gao A, Sun S, Zheng X, Chen X, et al. Sortilin promotes macrophage cholesterol accumulation and aortic

atherosclerosis through lysosomal degradation of ATP-binding cassette transporter A1 protein. Acta Biochim Biophys

Sin (Shanghai). 2019;51(5):471-483. doi: 10.1093/abbs/gmz029.

Liu F, Chen S, Ming X, Li H, Zeng Z, Lv Y. Sortilin-induced lipid accumulation and atherogenesis are suppressed by

HNF1b SUMOylation promoted by flavone of Polygonatum odoratum. J Zhejiang Univ Sci B. 2023;24(11):998-1013.

doi: 10.1631/jzus. B2200682.

Goettsch C, Hutcheson JD, Aikawa M, Iwata H, Pham T, Nykjaer A, et al. Sortilin mediates vascular calcification via

its recruitment into extracellular vesicles. J Clin Invest. 2016;126(4):1323-1336. doi: 10.1172/JCI80851.

Simsek Z, Alizade E, Güner A, Zehir R. Correlation between serum sortilin levels and severity of extracranial carotid

artery stenosis. Int J Clin Pract. 2021;75(11):e14733. doi: 10.1111/ijcp.14733.

imsek Z, Alizade E, Abdurahmanova İ, Güner A, Zehir R, Pala S. Serum sortilin as a predictor of stroke in patients

with intermediate carotid artery stenosis. Vascular. 2023;31(2):317-324. doi: 10.1177/17085381211067051.

Vukolova YuYu, Gubareva IV. Relationship of sortilin and proprotein convertase subtilisin/kexin type 9 in blood serum

with the severity of carotid and coronary atherosclerosis in hypertensive patients. Russian Journal of Cardiology.

;27(2S):4903. In Russian. (Вуколова Ю.Ю., Губарева И.В. Взаимосвязь сортилина и пропротеиновой конвертазы

субтилизин-кексинового типа 9 сыворотки крови с тяжестью каротидного и коронарного атеросклероза у па-

циентов с гипертонической болезнью. Российский кардиологический журнал. 2022;27(2S):4903). doi: 10.15829/1560-

-2022-4903.

Atak M, Sevim Nalkiran H, Bostan M, Uydu HA. The association of Sort1 expression with LDL subfraction and

inflammation in patients with coronary artery disease. Acta Cardiol. 2023;14:1-8. doi: 10.1080/00015385.2023.2285534.

Werida RH, Omran A, El-Khodary NM. Sortilin and Homocysteine as Potential Biomarkers for Coronary Artery

Diseases. Int J Gen Med. 2021;14:6167-6176. doi: 10.2147/IJGM.S324889.

Han W, Wei Z, Zhang H, Geng C, Dang R, Yang M, et al. The Association Between Sortilin and Inflammation in

Patients with Coronary Heart Disease. J Inflamm Res. 2020;13:71-79. doi: 10.2147/JIR.S240421.

Hu D, Yang Y, Peng DQ. Increased sortilin and its independent effect on circulating proprotein convertase subtilisin/

kexin type 9 (PCSK9) in statin-naive patients with coronary artery disease. Int J Cardiol. 2017;227:61-65. doi: 10.1016/j.

ijcard.2016.11.064.

Aggarwal S, Narang R, Saluja D, Srivastava K. Diagnostic potential of SORT1 gene in coronary artery disease. Gene.

;909:148308. doi: 10.1016/j.gene.2024.148308.

Chu X, Liu R, Li C, Gao T, Dong Y, Jiang Y, et al. The association of plasma sortilin with essential hypertension

and subclinical carotid atherosclerosis: A cross-sectional study. Front Cardiovasc Med. 2022;9:966890. doi: 10.3389/

fcvm.2022.966890.

Geiser A, Foylan S, Tinning PW, Bryant NJ, Gould GW. GLUT4 dispersal at the plasma membrane of adipocytes: a

super-resolved journey. Biosci Rep. 2023;43(10):BSR20230946. doi: 10.1042/BSR20230946.

van Gerwen J, Shun-Shion AS, Fazakerley DJ. Insulin signalling and GLUT4 trafficking in insulin resistance. Biochem

Soc Trans. 2023;51(3):1057-1069. doi: 10.1042/BST20221066.

Bogan JS, Kandror KV. Biogenesis and regulation of insulin-responsive vesicles containing GLUT4. Curr Opin Cell Biol.

;22(4):506-512. doi: 10.1016/j.ceb.2010.03.012.

Ariga M, Yoneyama Y, Fukushima T, Ishiuchi Y, Ishii T, Sato H, et al. Glucose deprivation attenuates sortilin levels in

skeletal muscle cells. Endocr J. 2017;64(3):255-268. doi: 10.1507/endocrj.EJ16-0319.

Ariga M, Nedachi T, Katagiri H, Kanzaki M. Functional role of sortilin in myogenesis and development of insulinresponsive

glucose transport system in C2C12 myocytes. J Biol Chem. 2008;283(15):10208-10220. doi: 10.1074/jbc.

M710604200.

Huang G, Buckler-Pena D, Nauta T, Singh M, Asmar A, Shi J, et al. Insulin responsiveness of glucose transporter 4

in 3T3-L1 cells depends on the presence of sortilin. Mol Biol Cell. 2013;24(19):3115-3122. doi: 10.1091/mbc.E12-10-0765.

Kobayashi T. Mapping trasmembrane distribution of sphingomyelin. Emerg Top Life Sci. 2023;7(1):31-45. doi: 10.1042/

ETLS20220086.

Rabinowich L, Fishman S, Hubel E, Thurm T, Park WJ, Pewzner-Jung Y, et al. Sortilin deficiency improves the metabolic

phenotype and reduces hepatic steatosis of mice subjected to diet-induced obesity. J Hepatol. 2015;62(1):175-181. doi:

1016/j.jhep.2014.08.030.

Lui A, Patel RS, Krause-Hauch M, Sparks RP, Patel NA. Regulation of Human Sortilin Alternative Splicing by

Glucagon-like Peptide-1 (GLP1) in Adipocytes. Int J Mol Sci. 2023;24(18):14324. doi: 10.3390/ijms241814324.

Ozalp M, Akbas H, Kizilirmak R, Albayrak M, Yaman H, Akbaş M, et al. Maternal serum sortilin levels in gestational

diabetes mellitus. Gynecol Endocrinol. 2021;37(10):941-944. doi: 10.1080/09513590.2021.1972966.

Biscetti F, Bonadia N, Santini F, Angelini F, Nardella E, Pitocco D, et al. Sortilin levels are associated with peripheral

arterial disease in type 2 diabetic subjects. Cardiovasc Diabetol. 2019;18(1):5. doi: 10.1186/s12933-019-0805-5.

Nardella E, Biscetti F, Rando MM, Cecchini AL, Nicolazzi MA, Rossini E, et al. Development of a biomarker panel

for assessing cardiovascular risk in diabetic patients with chronic limb-threatening ischemia (CLTI): a prospective

study. Cardiovasc Diabetol. 2023;22(1):136. doi: 10.1186/s12933-023-01872-x.

Biscetti F, Nardella E, Rando MM, Cecchini AL, Bonadia N, Bruno P, et al. Sortilin levels correlate with major

cardiovascular events of diabetic patients with peripheral artery disease following revascularization: a prospective

study. Cardiovasc Diabetol. 2020;19(1):147. doi: 10.1186/s12933-020-01123-3.

El-Khodary NM, Dabees H, Werida RH. Folic acid effect on homocysteine, sortilin levels and glycemic control in type

diabetes mellitus patients. Nutr Diabetes. 2022;12(1):33. doi: 10.1038/s41387-022-00210-6.

Werida R, Khairat I, Khedr NF. Effect of atorvastatin versus rosuvastatin on inflammatory biomarkers and LV function

in type 2 diabetic patients with dyslipidemia. Biomed Pharmacother. 2021;135:111179. doi: 10.1016/j.biopha.2020.111179.

Werida RH, Elattar OM, Abdelghafour RA, Ghoneim A. Effect of rosuvastatin on sortilin and fetuin-A in type 2

diabetic patients: a randomized controlled trial. Int J Diabetes Dev Ctries. 2024. doi: 10.1007/s13410-024-01324-6.

Chen C, Li J, Matye DJ, Wang Y, Li T. Hepatocyte sortilin 1 knockout and treatment with a sortilin 1 inhibitor reduced

plasma cholesterol in Western diet-fed mice. J Lipid Res. 2019;60(3):539-549. doi: 10.1194/jlr.M089789.

Jakobsen TS, Ostergaard JA, Kjolby M, Birch EL, Bek T, Nykjaer A, et al. Sortilin Inhibition Protects Neurons from

Degeneration in the Diabetic Retina. Invest Ophthalmol Vis Sci. 2023;64(7):8. doi: 10.1167/iovs.64.7.8.

Published

2024-06-26

How to Cite

Alieva A. M., Teplova N. V., Baykova I. E., Rakhaev A. M., Kovtyukh I. А., Kotikova I. V., Nikitin I. G. The role of sortilin in atherosclerosis and carbohydrate metabolism disorders (literature review) // The Journal of Atherosclerosis and Dyslipidemias. 2024. VOL. № 2(55). PP. 22–31.

Issue

Section

Review