Predictors of acute periprocedural myocardial injury during elective percutaneous coronary interventions

Authors

  • E. O. Nalesnik «Tomsk National Research Medical Center of the Russian Academy of Sciences»
  • A. N. Repin «Tomsk National Research Medical Center of the Russian Academy of Sciences»

DOI:

https://doi.org/10.34687/2219-8202.JAD.2024.03.0003

Abstract

Aim. To identify predictors of periprocedural myocardial injury (PMI) during elective percutaneous coronary intervention (PCI) and determine their association with the level of periprocedural increases in cardiac biomarkers (CB). Materials and methods. A single-center, open-label, prospective cohort study included 435 patients after elective PCI. Depending on the level of periprocedural increase in CB, patients were divided into 4 subgroups: without increase in CB; with an increase in CB ˃1 and ≤2x 99th percentile URL (minor PMI), >2x and ≤5x 99th percentile URL (moderate PMI), >5x 99th percentile URL (significant PMI). Next, the relationship between the level of periprocedural increase in CB and initial clinical and anamnestic data, concomitant therapy, indicators of laboratory and instrumental examination methods, and the results of genetic tests was analyzed. We used relative risk calculation and ROC analysis to determine the association of the level of CB elevation with predictors. A two-sided p value of <0.05 was considered statistically significant. Results. Minor PMI was associated with multifocal atherosclerosis, impaired glucose tolerance, doses and regimens of anticoagulants, antiplatelet agents, statins, saline infusion, baseline renal function and its change during the intervention, residual platelet reactivity during dual antiplatelet therapy, complexity of the index intervention, and the presence of thrombosis of previously installed stents, as well as the Met235Thr (rs699) polymorphism of the AGT gene. Moderate PMI was associated with clinical severity of the functional class of angina, previous cerebral stroke, intravenous saline infusion, complex type of target stenosis (type C), as well as baseline values of HbA1c, Lipocalin 2, Cystatin C and periprocedural increase in Lipocalin 2. Significant PMI was associated with obstructive pulmonary disease, clinical severity of the functional class of angina and stenosis of the left main coronary artery of more than 50%. Significant PMI differed in the formation factors from the group with minor PMI more significantly than from group 0, demonstrating a different direction of influence of risk factors associated with pharmacological strategies, such as the use of statins and anticoagulants, which requires a personalized approach to their prescription. Conclusion. Minor PMI is associated to a large extent with the comorbid conditions of patients and concomitant therapy, moderate PMI is associated with impaired renal function, the complexity of the index PCI, and significant PMI is associated with severe coronary lesions and the presence of inflammatory processes.

Downloads

Download data is not yet available.

References

Boden WE, O'Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, et al; COURAGE Trial Research Group. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356(15):1503-16. doi: 10.1056/NEJMoa070829.

Zeitouni M, Silvain J, Guedeney P, Kerneis M, Yan Y, Overtchouk P, et al; ACTION Study Group. Periprocedural myocardial infarction and injury in elective coronary stenting. Eur Heart J. 2018;39(13):1100-1109. doi: 10.1093/eurheartj/ehx799.

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). J Am Coll Cardiol. 2018;72(18):2231-2264. doi: 10.1016/j.jacc.2018.08.1038.

Wang HY, Xu B, Dou K, Guan C, Song L, Huang Y, et al. Implications of Periprocedural Myocardial Biomarker Elevations and Commonly Used MI Definitions After Left Main PCI. JACC Cardiovasc Interv. 2021;14(15):1623-1634. doi: 10.1016/j.jcin.2021.05.006.

Abdelmeguid AE, Ellis SG, Sapp SK, Whitlow PL, Topol EJ. Defining the appropriate threshold of creatine kinase elevation after percutaneous coronary interventions. Am Heart J. 1996;131(6):1097-105. doi: 10.1016/s0002-8703(96)90083-6.

Topol EJ, Ferguson JJ, Weisman HF, Tcheng JE, Ellis SG, Kleiman NS, et al. Long-term protection from myocardial ischemic events in a randomized trial of brief integrin beta3 blockade with percutaneous coronary intervention. EPIC Investigator Group. Evaluation of Platelet IIb/IIIa Inhibition for Prevention of Ischemic Complication. JAMA. 1997;78(6):479-84. doi: 10.1001/jama.278.6.479.

Lim CC, van Gaal WJ, Testa L, Cuculi F, Arnold JR, Karamitsos T, et al. With the "universal definition," measurement of creatine kinase-myocardial band rather than troponin allows more accurate diagnosis of periprocedural necrosis and infarction after coronary intervention. J Am Coll Cardiol. 2011;57(6):653-61. doi: 10.1016/j.jacc.2010.07.058.

Tricoci P, Leonardi S, White J, White HD, Armstrong PW, Montalescot G, et al. Cardiac troponin after percutaneous coronary intervention and 1-year mortality in non-ST-segment elevation acute coronary syndrome using systematic evaluation of biomarker trends. J Am Coll Cardiol. 2013;62(3):242-251. doi: 10.1016/j.jacc.2013.04.043.

Novack V, Pencina M, Cohen DJ, Kleiman NS, Yen CH, Saucedo JF, et al. Troponin criteria for myocardial infarction after percutaneous coronary intervention. Arch Intern Med. 2012;172(6):502-8. doi: 10.1001/archinternmed.2011.2275.

Cavallini C, Savonitto S, Violini R, Arraiz G, Plebani M, Olivari Z, et al; Italian 'Atherosclerosis, Thorombosis, and Vascular Biology' and 'Society for Invasive Cardiology-GISE' Investigators. Impact of the elevation of biochemical markers of myocardial damage on long-term mortality after percutaneous coronary intervention: results of the CK-MB and PCI study. Eur Heart J. 2005;26(15):1494-8. doi: 10.1093/eurheartj/ehi173.

Cavallini C, Verdecchia P, Savonitto S, Arraiz G, Violini R, Olivari Z, et al; Italian Atherosclerosis, Thrombosis and Vascular Biology and Society for Invasive Cardiology–GISE Investigators. Prognostic value of isolated troponin I elevation after percutaneous coronary intervention. Circ Cardiovasc Interv. 2010;3(5):431-5. doi: 10.1161/CIRCINTERVENTIONS.110.957712.

Nalesnik E.O., Repin A.N. Frequency and Prognostic Value of Acute Periprocedural Myocardial Injury in Elective Percutaneous Coronary Interventions. The Russian Archives of Internal Medicine. 2024;14(1):38-51. Russian. (Налесник Е.О., Репин А.Н. Частота и прогностическое значение острого перипроцедурного повреждения миокарда при плановых чрескожных коронарных вмешательствах. Архивъ внутренней медицины. 2024;14(1):38-51) doi: 10.20514/2226-6704-2024-14-1-38-51.

Bulluck H, Paradies V, Barbato E, Baumbach A, Bøtker HE, Capodanno D, et al. Prognostically relevant periprocedural myocardial injury and infarction associated with percutaneous coronary interventions: a Consensus Document of the ESC Working Group on Cellular Biology of the Heart and European Association of Percutaneous Cardiovascular Interventions (EAPCI). European Heart Journal. 2021;42:2630–2642. doi: 10.1093/eurheartj/ehab271.

Park D, Kim Y, Yun S, Ahn J, Lee J, Kim W, et al. Frequency, causes, predictors, and clinical significance of peri-procedural myocardial infarction following percutaneous coronary intervention. European Heart Journal. 2013; 34: 1662–1669. doi: 10.1093/eurheartj/eht048.

Akchurin R. S., Alekyan B. G., Aronov D. M., Belenkov Yu. N., Boytsov S. A., Boldueva S. A., et al. 2020 Clinical practice guidelines for Stable coronary artery disease. Russian Journal of Cardiology. 2020;25(11):4076. Russian. (Акчурин Р. С., Алекян Б. Г., Аронов Д. М., Беленков Ю. Н., Бойцов С. А., Болдуева С. А. и др. Стабильная ишемическая болезнь сердца. Клинические рекомендации 2020. Российский кардиологический журнал. 2020;25(11):4076). doi:10.15829/1560-4071-2020-4076.

Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-84. doi: 10.1159/000339789.

Silvain J, Zeitouni M, Paradies V, Zheng HL, Ndrepepa G, Cavallini C, et al. Procedural myocardial injury, infarction and mortality in patients undergoing elective PCI: a pooled analysis of patient-level data. European Heart Journal. 2021;42:323–334. doi: 10.1093/eurheartj/ehaa885.

Prasad A, Rihal CS, Lennon RJ, Singh M, Jaffe AS, Holmes DR. Significance of Periprocedural Myonecrosis on Outcomes after Percutaneous Coronary Intervention: an analysis of preintervention and postintervention troponin T levels in 5487 patients. Circulation: Cardiovascular Interventions. 2008;1:10–19. doi: 10.1161/CIRCINTERVENTIONS.108.765610.

Feldman DN, Minutello RM, Bergman G, Moussa I, Wong SC. Relation of Troponin I Levels Following Nonemergent Percutaneous Coronary Intervention to Short- and Long Term Outcomes. The American Journal of Cardiology. 2009;104:1210–1215. doi: 10.1016/j.amjcard.2009.06.032.

Di Serafino L, Borgia F, Maeremans J, Pyxaras SA, De Bruyne B, Wijns W, et al. Periprocedural Myocardial Injury and Long-Term Clinical Outcome in Patients Undergoing Percutaneous Coronary Interventions of Coronary Chronic Total Occlusion/ The Journal of Invasive Cardiology. 2016;28:410–414. PMID: 26984930.

Abu Sharar H, Helfert S, Vafaie M, Pleger ST, Chorianopoulos E, Bekeredjian R, et al. Identification of patients at higher risk for myocardial injury following elective coronary artery intervention. Catheterization and Cardiovascular Interventions. 2020;96:578–585. doi: 10.1002/ccd.28549.

Chen Z, Yang H, Chen Y, Ma J, Qian J, Ge J. Impact of multivessel therapy to the risk of periprocedural myocardial injury after elective coronary intervention: exploratory study. BMC Cardiovascular Disorders. 2017;17:69. doi: 10.1186/s12872-017-0501-x.

Silvain J, Lattuca B, Beygui F, Rangé G, Motovska Z, Dillinger JG, et al. Ticagrelor versus clopidogrel in elective percutaneous coronary intervention (ALPHEUS): a randomised, open-label, phase 3b trial. The Lancet. 2020;396:1737–1744. doi: 10.1016/S0140-6736(20)32236-4.

Koskinas KC, Ndrepepa G, Räber L, Karagiannis A, Kufner S, Zanchin T, et al. Prognostic Impact of Periprocedural Myocardial Infarction in Patients Undergoing Elective Percutaneous Coronary Interventions. Circ Cardiovasc Interv. 2018;11(12):e006752. doi: 10.1161/CIRCINTERVENTIONS.118.006752.

Herrmann J. Peri-procedural myocardial injury: 2005 update. Eur Heart J. 2005;26(23):2493-519. doi: 10.1093/eurheartj/ehi455.

Patel VG, Brayton KM, Mintz GS, Maehara A, Banerjee S, Brilakis ES. Intracoronary and noninvasive imaging for prediction of distal embolization and periprocedural myocardial infarction during native coronary artery percutaneous intervention. Circ Cardiovasc Imaging. 2013;6(6):1102-14. doi: 10.1161/CIRCIMAGING.113.000448.

Popma JJ, Mauri L, O'Shaughnessy C, Overlie P, McLaurin B, Almonacid A, et al. Frequency and clinical consequences associated with sidebranch occlusion during stent implantation using zotarolimus-eluting and paclitaxel-eluting coronary stents. Circ Cardiovasc Interv. 2009;2(2):133-9. doi: 10.1161/CIRCINTERVENTIONS.108.832048.

Chan W, Stub D, Clark DJ, Ajani AE, Andrianopoulos N, Brennan AL, et al; Melbourne Interventional Group Investigators. Usefulness of transient and persistent no reflow to predict adverse clinical outcomes following percutaneous coronary intervention. Am J Cardiol. 2012;109(4):478-85. doi: 10.1016/j.amjcard.2011.09.037.

Otsuka K, Shimada K, Ishikawa H, Nakamura H, Katayama H, Takeda H, et al. Usefulness of pre- and post-stent optical frequency domain imaging findings in the prediction of periprocedural cardiac troponin elevation in patients with coronary artery disease. Heart and Vessels. 2020;35: 451–462. doi: 10.1007/s00380-019-01512-z.

Stone GW, Maehara A, Muller JE, Rizik DG, Shunk KA, Ben-Yehuda O, et al. Plaque Characterization to Inform the Prediction and Prevention of Periprocedural Myocardial Infarction during Percutaneous Coronary Intervention: The CANARY Trial (Coronary Assessment by Near-infrared of Atherosclerotic Rupture-prone Yellow). JACC: Cardiovascular Interventions. 2015;8: 927–936. doi: 10.1016/j.jcin.2015.01.032.

Böse D, von Birgelen C, Zhou XY, Schmermund A, Philipp S, Sack S, Konorza T, Möhlenkamp S, Leineweber K, Kleinbongard P, Wijns W, Heusch G, Erbel R. Impact of atherosclerotic plaque composition on coronary microembolization during percutaneous coronary interventions. Basic Res Cardiol. 2008;103(6):587-97. doi: 10.1007/s00395-008-0745-9.

Sakakura K, Nakano M, Otsuka F, Ladich E, Kolodgie FD, Virmani R. Pathophysiology of atherosclerosis plaque progression. Heart Lung Circ. 2013;22(6):399-411. doi: 10.1016/j.hlc.2013.03.001.

Bibek SB, Xie Y, Gao JJ, Wang Z, Wang JF, Geng DF. Role of pre-procedural C-reactive protein level in the prediction of major adverse cardiac events in patients undergoing percutaneous coronary intervention: a meta-analysisof longitudinal studies. Inflammation. 2015;38(1):159-69. doi: 10.1007/s10753-014-0018-8.

Padro T, Manfrini O, Bugiardini R, Canty J, Cenko E, De Luca G, et al. ESC Working Group on Coronary Pathophysiology and Microcirculation position paper on 'coronary microvascular dysfunction in cardiovascular disease'. Cardiovasc Res. 2020;116(4):741-755. doi: 10.1093/cvr/cvaa003.

Scarsini R, De Maria GL, Borlotti A, Kotronias RA, Langrish JP, Lucking AJ, et al. Incremental Value of Coronary Microcirculation Resistive Reserve Ratio in Predicting the Extent of Myocardial Infarction in Patients with STEMI. Insights from the Oxford Acute Myocardial Infarction (OxAMI) Study. Cardiovasc Revasc Med. 2019;20(12):1148-1155. doi: 10.1016/j.carrev.2019.01.022.

Topol EJ, Mark DB, Lincoff AM, Cohen E, Burton J, Kleiman N, et al. Outcomes at 1 year and economic implications of platelet glycoprotein IIb/IIIa blockade in patients undergoing coronary stenting: results from a multicentre randomised trial. EPISTENT Investigators. Evaluation of Platelet IIb/IIIa Inhibitor for Stenting. Lancet. 1999;354(9195):2019-24. doi: 10.1016/s0140-6736(99)10018-7.

Lotrionte M, Biondi-Zoccai GG, Agostoni P, Abbate A, Angiolillo DJ, Valgimigli M, et al. Meta-analysis appraising high clopidogrel loading in patients undergoing percutaneous coronary intervention. The American Journal of Cardiology. 2007; 100: 1199–1206. doi: 10.1016/j.amjcard.2007.05.048.

Mehilli J, Baquet M, Hochholzer W, Mayer K, Tesche C, Aradi D, et al. Randomized Comparison of Intensified and Standard P2Y12-Receptor-Inhibition Before Elective Percutaneous Coronary Intervention: The SASSICAIA Trial. Circ Cardiovasc Interv. 2020;13(6):e008649. doi: 10.1161/CIRCINTERVENTIONS.119.008649.

Landi A, De Servi S. Time-dependent impact of Ticagrelor and Prasugrel on infarct size: Looking beyond antiplatelet effect. Int J Cardiol. 2020;318:26. doi: 10.1016/j.ijcard.2020.06.039.

Huang B, Qian Y, Xie S, Ye X, Chen H, Chen Z, et al. Ticagrelor inhibits the NLRP3 inflammasome to protect against inflammatory disease independent of the P2Y12 signaling pathway. Cell Mol Immunol. 2021;18(5):1278-1289. doi: 10.1038/s41423-020-0444-5.

Cesarini D, Muraca I, Berteotti M, Gori AM, Sorrentino A, Bertelli A, et al. Pathophysiological and Molecular Basis of the Side Effects of Ticagrelor: Lessons from a Case Report. Int J Mol Sci. 2023;24(13):10844. doi: 10.3390/ijms241310844.

Wernly B, Erlinge D, Pernow J, Zhou Z. Ticagrelor: a cardiometabolic drug targeting erythrocyte-mediated purinergic signaling? Am J Physiol Heart Circ Physiol. 2021;320(1):H90-H94. doi: 10.1152/ajpheart.00570.2020.

Pasceri V, Patti G, Nusca A, Pristipino C, Richichi G, Di Sciascio G. Randomized trial of atorvastatin for reduction of myocardial damage during coronary intervention: results from the ARMYDA (Atorvastatin for Reduction of MYocardial Damage during Angioplasty) study. Circulation. 2004;110:674–678. doi: 10.1161/01.CIR.0000137828.06205.87.

Pickard JMJ, Bøtker HE, Crimi G, Davidson B, Davidson SM, Dutka D, et al. Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Research in Cardiology. 2015;110:453. doi: 10.1007/s00395-014-0453-6.

Sardella G, Lucisano L, Mancone M, Conti G, Calcagno S, Stio RE, et al. Comparison of high reloading ROsuvastatin and Atorvastatin pretreatment in patients undergoing elective PCI to reduce the incidence of MyocArdial periprocedural necrosis. The ROMA II trial. International Journal of Cardiology. 2013;168:3715–3720. doi: 10.1016/j.ijcard.2013.06.017.

Briguori C, Visconti G, Focaccio A, Golia B, Chieffo A, Castelli A, et al. Novel Approaches for Preventing or Limiting Events (Naples) II Trial: Impact of a Single High Loading Dose of Atorvastatin on Periprocedural Myocardial Infarction. Journal of the American College of Cardiology. 2009;54:2157–2163. doi: 10.1016/j.jacc.2009.07.005.

Vershinina E.O., Repin A.N., Salnikova E.S. Loading doses of statins before elective percutaneous coronary interventions. Heart: a magazine for medical practitioners. 2016;3 (89):181-191. Russian. (Вершинина Е.О., Репин А.Н., Сальникова Е.С. Нагрузочные дозы статинов при плановых эндоваскулярных вмешательствах на коронарных артериях. Сердце: журнал для практикующих врачей. 2016;3(89):181-191). doi: 10.18087/rhj.2016.3.2181.

Pan Y, Tan Y, Li B, Li X. Efficacy of high-dose rosuvastatin preloading in patients undergoing percutaneous coronary intervention: a meta-analysis of fourteen randomized controlled trials. Lipids in Health and Disease. 2015;14:97. doi: 10.1186/s12944-015-0095-1.

Banach M, Rizzo M, Toth PP, Farnier M, Davidson MH, Al-Rasadi K, et al. Statin intolerance—an attempt at a unified definition. Position paper from an International Lipid Expert Panel. Arch Med Sci., 2015;11:1–23. doi: 10.5114/aoms.2015.49807.

Mancini GB, Baker S, Bergeron J, Fitchett D, Frohlich J, Genest J, et al. Diagnosis, prevention, and management of statin adverse effects and intolerance: Canadian Consensus Working Group Update (2016). Can J Cardiol., 2016; 32:S35–65. doi: 10.1016/j.cjca.2016.01.003.

Nikolic D, Banach M, Chianetta R, Luzzu LM, Pantea Stoian A, Diaconu CC, et al. An overview of statin-induced myopathy and perspectives for the future. Expert Opin Drug Saf. 2020;19(5):601-615. doi: 10.1080/14740338.2020.1747431.

Schirris TJ, Renkema GH, Ritschel T, Voermans NC, Bilos A, van Engelen BG, et al. Statin-Induced Myopathy Is Associated with Mitochondrial Complex III Inhibition. Cell Metab. 2015;22(3):399-407. doi: 10.1016/j.cmet.2015.08.002.

Godoy JC, Niesman IR, Busija AR, Kassan A, Schilling JM, Schwarz A, et al. Atorvastatin, but not pravastatin, inhibits cardiac Akt/mTOR signaling and disturbs mitochondrial ultrastructure in cardiac myocytes. FASEB J. 2019;33(1):1209-1225. doi: 10.1096/fj.201800876R.

Cianflone E, Cappetta D, Mancuso T, Sabatino J, Marino F, Scalise M, et al. Statins Stimulate New Myocyte Formation After Myocardial Infarction by Activating Growth and Differentiation of the Endogenous Cardiac Stem Cells. Int J Mol Sci. 2020;21(21):7927. doi: 10.3390/ijms21217927.

Xu H, Shen Y, Liang C, Wang H, Huang J, Xue P, et al. Inhibition of the mevalonate pathway improves myocardial fibrosis. Exp Ther Med. 2021;21(3):224. doi: 10.3892/etm.2021.9655.

Oesterle A, Laufs U, Liao JK. Pleiotropic Effects of Statins on the Cardiovascular System. Circ Res. 2017;120(1):229-243. doi: 10.1161/CIRCRESAHA.116.308537.

Cheng C, Liu XB, Bi SJ, Lu QH, Zhang J. Inhibition of Rho-kinase is involved in the therapeutic effects of atorvastatin in heart ischemia/reperfusion. Exp Ther Med. 2020;20(4):3147-3153. doi: 10.3892/etm.2020.9070.

Emelyanova L, Sra A, Schmuck EG, Raval AN, Downey FX, Jahangir A, et al. Impact of statins on cellular respiration and de-differentiation of myofibroblasts in human failing hearts. ESC Heart Fail. 2019;6(5):1027-1040. doi: 10.1002/ehf2.12509.

Stumpf C, Petzi S, Seybold K, Wasmeier G, Arnold M, Raaz D, et al. Atorvastatin enhances interleukin-10 levels and improves cardiac function in rats after acute myocardial infarction. Clin Sci (Lond). 2009;116(1):45-52. doi: 10.1042/CS20080042.

Pentz R, Kaun C, Thaler B, Stojkovic S, Lenz M, Krychtiuk KA, et al. Cardioprotective cytokine interleukin-33 is up-regulated by statins in human cardiac tissue. J Cell Mol Med. 2018 Dec;22(12):6122-6133. doi: 10.1111/jcmm.13891.

Wang Q, Chen Z, Guo J, Peng X, Zheng Z, Chen H, et al. Atorvastatin-induced tolerogenic dendritic cells improve cardiac remodeling by suppressing TLR-4/NF-κB activation after myocardial infarction. Inflamm Res. 2023;72(1):13-25. doi: 10.1007/s00011-022-01654-3.

Chen A, Chen Z, Zhou Y, Wu Y, Xia Y, Lu D, et al. Rosuvastatin protects against coronary microembolization-induced cardiac injury via inhibiting NLRP3 inflammasome activation. Cell Death Dis. 2021 Jan 12;12(1):78. doi: 10.1038/s41419-021-03389-1.

Ozturk N, Uslu S, Mercan T, Erkan O, Ozdemir S. Rosuvastatin Reduces L-Type Ca2+ Current and Alters Contractile Function in Cardiac Myocytes via Modulation of β-Adrenergic Receptor Signaling. Cardiovasc Toxicol. 2021;21(5):422-431. doi: 10.1007/s12012-021-09642-5.

Geiger R, Fatima N, Schooley JF Jr, Smyth JT, Haigney MC, Flagg TP. Novel cholesterol-dependent regulation of cardiac KATP subunit expression revealed using histone deacetylase inhibitors. Physiol Rep. 2021;8(24):e14675. doi: 10.14814/phy2.14675.

Rossello X, Yellon DM. The RISK pathway and beyond. Basic Res Cardiol. 2017;113(1):2. doi: 10.1007/s00395-017-0662-x.

Sciarretta S, Forte M, Frati G, Sadoshima J. New Insights Into the Role of mTOR Signaling in the Cardiovascular System. Circ Res. 2018;122(3):489-505. doi: 10.1161/CIRCRESAHA.117.311147.

Groenewoud MJ, Zwartkruis FJ. Rheb and mammalian target of rapamycin in mitochondrial homoeostasis. Open Biol. 2013;3(12):130185. doi: 10.1098/rsob.130185.

Irwin JC, Fenning AS, Vella RK. Statins with different lipophilic indices exert distinct effects on skeletal, cardiac and vascular smooth muscle. Life Sci. 2020;242:117225. doi: 10.1016/j.lfs.2019.117225.

März W, Siekmeier R, Müller HM, Wieland H, Gross W, Olbrich HG. Effects of lovastatin and pravastatin on the survival of hamsters with inherited cardiomyopathy. J Cardiovasc Pharmacol Ther. 2000;5(4):275-9. doi: 10.1054/JCPT.2000.16695.

Okuyama H, Langsjoen PH, Hamazaki T, Ogushi Y, Hama R, Kobayashi T, et al. Statins stimulate atherosclerosis and heart failure: pharmacological mechanisms. Expert Rev Clin Pharmacol. 2015;8(2):189-99. doi: 10.1586/17512433.2015.1011125.

McMurray JJ, Dunselman P, Wedel H, Cleland JG, Lindberg M, Hjalmarson A, et al; CORONA Study Group. Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: a pre-specified substudy of CORONA (controlled rosuvastatin multinational study in heart failure). J Am Coll Cardiol. 2010;56(15):1196-204. doi: 10.1016/j.jacc.2010.02.075.

Moosmann B, Behl C. Selenoprotein synthesis and side-effects of statins. Lancet. 2004;363(9412):892-4. doi: 10.1016/S0140-6736(04)15739-5.

Attalla DM, Ahmed LA, Zaki HF, Khattab MM. Paradoxical effects of atorvastatin in isoproterenol-induced cardiotoxicity in rats: Role of oxidative stress and inflammation. Biomed Pharmacother. 2018;104:542-549. doi: 10.1016/j.biopha.2018.05.005.

Ünlü S, Nurkoç SG, Sezenöz B, Cingirt M, Gülbahar Ö, Abacı A. Impact of statin use on high sensitive troponin T levels with moderate exercise. Acta Cardiol. 2019;74(5):380-385. doi: 10.1080/00015385.2018.1510801.

Will Y, Shields JE, Wallace KB. Drug-Induced Mitochondrial Toxicity in the Geriatric Population: Challenges and Future Directions. Biology (Basel). 2019;8(2):32. doi: 10.3390/biology8020032.

Bielecka-Dabrowa A, Fabis J, Mikhailidis DP, von Haehling S, Sahebkar A, Rysz J, et al. Prosarcopenic Effects of Statins May Limit Their Effectiveness in Patients with Heart Failure. Trends Pharmacol Sci. 2018;39(4):331-353. doi: 10.1016/j.tips.2018.02.003.

Published

2024-08-23

How to Cite

Nalesnik E. O., Repin A. N. Predictors of acute periprocedural myocardial injury during elective percutaneous coronary interventions // The Journal of Atherosclerosis and Dyslipidemias. 2024. VOL. № 3(56). PP. 21–44.

Issue

Section

Original research paper