Some features of changes in carbohydrate-energy metabolism in the myocardium and skeletal muscles of rats under the influence of Simvastatin

Authors

  • E. S. Belousova Rostov State Medical University
  • Z. I. Mikashinovich Rostov State Medical University
  • E. V. Vinogradova Rostov State Medical University
  • T.D. Loseva Rostov State Medical University

DOI:

https://doi.org/10.34687/2219-8202.JAD.2024.01.0003

Keywords:

statins, statin myopathy, mitochondrial dysfunction, energy metabolism.

Abstract

The purpose of the study was a comprehensive analysis of biochemical changes in the skeletal muscles and myocardium of rats after the administration of Simvastatin.
Materials and methods. The study was conducted on outbred male rats (4 groups of 35 individuals) aged 12-14 months (300-350 g). The control group (intact animals) received the general diet of the vivarium and 2 ml of purified water daily through an esophageal tube. Animals of group 1 were also on a standard vivarium diet, plus they received an aqueous suspension of simvastatin through an esophageal tube at a dose of 0.012 g/kg body weight once daily for 2 months. In rats of groups 2 and 3, hypercholesterolemia was induced for 3 months, after diagnosis of which, animals
of group 2 were on a diet without the addition of simvastatin for two months, and animals of group 3 were administered simvastatin at a dose of 0.012 g/kg body weight once a day during the same period in the form of an aqueous suspension through an esophageal tube. In the myocardium
and skeletal muscles of animals, the activity of dehydrogenases of the Krebs cycle, cytochrome oxidase, the content of pyruvic acid and lactate were determined.
Results. The mechanisms of emergency restructuring of myocardial and skeletal muscle metabolism under the action of Simvastatin depended on the initial functional state of the organism.
In animals of group 1, under the influence of Simvastatin, an emergency metabolic
rearrangement was detected, aimed at activating glycolysis and oxidation of NAD-dependent substrates, as indicated by an increase in lactate levels and pyruvate dehydrogenase activity. The dynamics of the level of lactate and pyruvate and the activity of energy metabolism enzymes in the conditions of modeling alimentary hypercholesterolemia after the administration of Simvastatin reflects a tendency to reduce the severity of hypoxic changes caused by HC, but at the same time, indicates the inferiority of protective intracellular mechanisms and the formation of mitochondrial dysfunction.
Conclusion. Analysis of the revealed changes showed that the myocardium, as a special type of muscle tissue, can be subjected to damaging effects during long-term use of Statins.

Downloads

Download data is not yet available.

Author Biographies

E. S. Belousova, Rostov State Medical University

Candidate of Biological Sciences, Associate Professor, Head of the Department of Pharmaceutical Chemistry and Pharmacognosy

Z. I. Mikashinovich, Rostov State Medical University

Doctor of Biological Sciences, Professor, Professor of the Department of General and Clinical Biochemistry № 1

E. V. Vinogradova, Rostov State Medical University

Candidate of Medical Sciences, Associate Professor of the Department of Pharmaceutical Chemistry and Pharmacognosy

T.D. Loseva, Rostov State Medical University

Candidate of Medical Sciences, Associate Professor of the Department of Chemistry of the Preparatory Faculty for the Education of Foreign Citizens

References

Okuyama H, Langsjoen PH, Hamazaki T, Ogushi Y, Hama R, Kobayashi T. et al. Statins stimulate atherosclerosis and heart failure: pharmacological mechanisms. Expert Review of Clinical Pharmacology. 2015;8(2):189-199. doi: 10.1586/17512433.2015.1011125.

Broniarek I, Jarmuszkiewicz W. Statins and mitochondria. Postepy Biochemii. 2016;62(2):77-84.

Mikashinovich Z.I., Belousova E.S., Semenets I.A., Romashenko A.V., Kantaria A.V., Patent for invention №2733693, Russian Federation, G09B 23/28, 2020. In Russian. (Микашинович З.И., Белоусова Е.С., Семенец И.А., Ромашенко А.В., Кантария А.В., патент на изобретение №2733693, РФ, G09B 23/28, 2020).

Mikashinovich Z.I., Belousova E.S., Sarkisyan O.G., Vikhlyantsev I.M., Vinogradova E.V., Patent for invention №2632624, РФ, G09B 23/28, 2017. In Russian. (Микашинович З.И., Белоусова Е.С., Саркисян О.Г., Вихлянцев И.М., Виноградова Е.В., патент РФ на изобретение №2632624, РФ, G09B 23/28, 2017).

Kamyshnikov V.S. Handbook of clinical and biochemical studies and laboratory diagnostics. 2-e izd., pererab. i dop. Moscow: MEDpress-inform. 2004:911. In Russian. (Камышников В.С. Справочник по клинико-биохимическим исследованиям и лабораторной диагностике. 2-е изд., перераб. и доп. М.: МЕДпресс-информ. 2004:911).

Danilova L.A., Basharina O.B., Krasnikova E.N., Litvinenko L.A., Ramenskaya N.P., Fomenko M.O., Mashek O.N. Handbook of laboratory research. Saint Petersburg.: Piter. 2003:733. In Russian. (Данилова Л.А., Башарина О.Б., Красникова Е.Н., Литвиненко Л.А., Раменская Н.П., Фоменко М.О., Машек О.Н. Справочник по лабораторным исследованиям. СПб.: Питер. 2003:733).

Modern methods in biochemistry / edited by Orekhovich V.N. – Moscow: Medicine; 1977:392. In Russian. (Современные методы в биохимии / под ред. Ореховича В.Н. – М.: Медицина; 1977:392).

Nordmann IN. Determination the activiti dehydrogenasique des mitochondries a 1-acid-dichloride-2,3,5-triphenyl-tetrazolium. Bulletin de la Société de chimie biologique. 1957:33; 189-197.

Chepur S.V., Pluzhnikov N.N., Chubar O.V., Fateev I.V., Bakulina L.S., Litvinenko I.V., Shiryaeva A.I. Lactic acid: dynamics of ideas about the biology of lactate. Advances in modern biology. 2021;141(3):227-247. In Russian. (Чепур С.В., Плужников Н.Н., Чубарь О.В., Фатеев И.В., Бакулина Л.С., Литвиненко И.В., Ширяева А.И. Молочная кислота: динамика представлений о биологии лактата. Успехи современной биологии. 2021;141 (3):227-247). doi: 10.31857/S0042132421030042.

Telkova I.L., Teplyakov A.T. Clinical and pathophysilogical aspects of the effects of chronic hypoxia/ischemia on energetic metabolism of the myocardium. Clinical medicine. 2004;82(3):4-11. In Russian. (Телкова И.Л., Тепляков А.Т. Клинические и патофизиологические аспекты влияния хронической гипоксии/ишемии на энергетический метаболизм миокарда. Клиническая медицина. 2004;82(3):4-11.

Blagodrov V.N., Danilishina M.V., Lagoda N.N., Rudnitskaya O.G., Ivanova M.D. Cytochemical aspects of energetic deficiency of the myocardium at the atherogenic dislipoproteidemia. The world of medicine and biology. 2011;7(4):20-23. In Russian. (Благодаров В.Н., Данилишина М.В., Лагода Н.Н., Рудницкая О.Г., Иванова М.Д. цитохимические аспекты энергетического дефицита миокарда в условиях атерогенной дислипопротеидемии. Свiт медицини та бiологii. 2011;7(4):20-23). Russ.).

Novikov V.E., Katunina N.P. Pharmacology and biochemistry of hypoxia. Obzory po klinicheskoj farmakologii i lekarstvennoj terapii - Reviews of clinical pharmacology and drug therapy. 2002;1(2):73-87. In Russian. (Новиков В.Е., Катунина Н.П. Фармакология и биохимия гипоксии. Обзоры по клинической фармакологии и лекарственной терапии. 2002;1(2):73-87).

Published

2024-03-12

How to Cite

Belousova E. S., Mikashinovich Z. I. ., Vinogradova E. V. ., Loseva T. . Some features of changes in carbohydrate-energy metabolism in the myocardium and skeletal muscles of rats under the influence of Simvastatin // The Journal of Atherosclerosis and Dyslipidemias. 2024. VOL. № 1(54). PP. 22–28.

Issue

Section

Original research paper